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This work develops a boundary-layer model for the thermocapillary feedback mechanism that can
occur at the edge of weld pools and other materials processes, in the limit where convection
dominates the heat transport but the Prandtl number is small. Previously, Canright@Phys. Fluids6,
1415 ~1994!# showed that in this regime the dynamics of this ‘‘cold corner’’ region is locally
determined through the thermal gradient driving the convection that contains the gradient. The
present work applies standard boundary-layer approximations to construct a model that captures this
dominant feedback mechanism and agrees well with a purely numerical model. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1498117#

I. INTRODUCTION

Many materials processes involve a pool of molten ma-
terial with a free surface. In some cases thermocapillary
forces predominate in driving vigorous convection in the
melt, at least in certain regions~i.e., cold corner regions1! or
in low gravity. Reviews of some relevant studies of ther-
mocapillary flows, both numerical and analytical, are given
by Ostrach2 and by Davis.3 Some careful numerical studies,
e.g., those of Zebibet al.4 and Zehret al.,5 have shown
strong thermocapillary convection and heat transfer in a
small region where the liquid meets the relatively cool solid,
at least for small Prandtl number. The small length scales in
this ‘‘cold corner’’ region result from a sort of positive feed-
back, where the surface thermal gradient drives the convec-
tion that compresses the thermal gradient. Great care is nec-
essary to resolve the small length scales of this region
numerically.

In previous work, Canright6 explored the scaling of the
cold corner region in two dimensions, analytically and nu-
merically, and showed that for sufficiently strong convection,
i.e., high Marangoni number, the corner dynamics and scal-
ing are locally determined, relatively unaffected by condi-
tions far from the corner. For such cases where additionally
the Prandtl number is small, and hence the Reynolds number
is high, thin viscous boundary layers form within the corner
region, preventing the vorticity from diffusing into the main
flow. The present work develops a boundary layer model for
this case.

Standard boundary layer techniques are applied to give
approximate descriptions of the viscous boundary layers
along the free surface and the solid boundary. The entrain-
ment into the boundary layers drives the irrotational flow in
the ‘‘core’’ region, outside the boundary layers. The core
flow is used in numerically solving the convection-diffusion
heat equation. The resulting surface thermal gradient is used
to update the surface boundary layer. This cycle is iterated to
convergence, giving a consistent approximate description of

the cold corner feedback region. This model, with no adjust-
able parameters, agrees well with the purely numerical
results.6

This model of the rapid convection and high heat trans-
fer in the cold corner may be useful as a local description,
when coupled to numerical investigations of the overall be-
havior of the melt in materials processes. Such use would
obviate the otherwise severe numerical requirements of re-
solving the small length scales of this important region of
high heat transfer.

This work is organized as follows. We define the prob-
lem in Sec. II and also correct the scaling of Canright.6 In
Sec. III we exploit the boundary-layer structure to derive the
leading-order equations for each region. Section IV gives
analytic solutions for the flow inside and outside the bound-
ary layers, and describes the numerical solution method for
the thermal field. Results and conclusions comprise the last
two sections.

II. PROBLEM STATEMENT AND SCALING

The present work analyzes a particular parameter regime
of the problem examined by Canright.6 ~The analysis below
was shown in much greater detail by Huber.7! A pool of
incompressible Newtonian fluid is bounded on the left by a
vertical solid wall, piecewise isothermal, cold to depthd and
hot below, while the fluid far from the corner is at the hot
ambient temperature: See Fig. 1. Above the horizontal free
surface of the liquid is an inviscid, nonconducting gas. Sur-
face tension is assumed strong enough to keep the free sur-
face flat~small Capillary number!, but with surface tension
variations due to a linear dependence on temperature. Grav-
ity is neglected. The resulting flow is assumed to be two-
dimensional and steady.

The corresponding dimensionless problem follows,
based on the overall length scaled ~from the wall boundary
condition!, the temperature differenceDT, and the velocity
scaleus[gDT/m, whereg, assumed constant and positive,
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is the negative of the derivative of the surface tension with
respect to temperature andm is viscosity

Mu•¹T5¹2T, ~1!

M /Pu•¹u52¹p1¹2u, ~2!

¹•u50, ~3!

with the boundary conditions

at y50: Ty50, v50, uy5Tx , ~4!

at x50: T5H 21, y,1

0, y.1
, u5v50, ~5!

as x,y→`: T→0, u,v→0. ~6!

Hereu is the velocity vector with componentsu andv in the
x ~rightward! and y ~downward! directions,p is pressure,
andT is temperature. The two dimensionless parameters are
the Marangoni numberM[usd/k and the Prandtl number
P[v/k, wherek is the thermal diffusivity andv is the ki-
nematic viscosity. The Reynolds number isR[M /P.

With two independent parameters there are four different
asymptotic regimes of behavior. The regime we consider
here is where the flow is strong enough to compress the
thermal gradient against the wall and the viscosity is small
enough that vorticity is confined to thin boundary layers
along the surface and the wall, around an essentially irrota-
tional core region. These viscous boundary layers are within
the compressed thermal region, as seen in the prior numeri-
cal results;6 this is the region we analyze here.

Following Canright,6 let the velocity scale along the sur-
face beU, the horizontal length scale of the temperature
variation bel , and the vertical thickness of the surface vis-
cous boundary layer bed. From the thermocapillary condi-
tion ~4c!, U/d;1/l . Then by continuity ~3!, where the
boundary layer meets the core,v;(d/ l )U;(d/ l )2.

If the horizontal velocity in the core is of the same scale
as that along the surface, as assumed in previous work,6 then
the vorticity in the core scales asv[vx2uy;(Ud/ l 2)

2(U/l);U/l, which is of the same order as the velocity gra-
dient. This is inconsistent with the core flow being essen-
tially irrotational, with vorticity confined to the boundary
layers, as is seen in the numerical results. Hence the core
velocity scale in both directions must be that ofv, i.e.,
(d/ l )2.

In the surface boundary layer, convection and vertical
diffusion of momentum are both important, so from~2!,
(M /P)U2/ l;U/d2. In the core, outside the viscous bound-
ary layers, convection of heat balances diffusion, so~1! gives
M (d/ l )U(1/l );1/l 2. Solving gives these scales:l
;M 21P22, d;M 21P21, U;P, with the core velocity
scaleP2. This regime applies as long as diffusion of momen-
tum is negligible in the core and the horizontal thermal
length scale is much smaller than the vertical, givingM
@P22, P!1.

This correction modifies the scaling analysis in
Canright6 in the convective inertial regime. Similar reason-
ing applies in the conductive inertial regime. This gives the
scalingsl;1, U;d;(P/M )1/3, as previously,6 but with the
core velocity scale (P/M )2/3. The range of the conductive
inertial regime is changed toP!M!P22, P!1. Note that
all these corrected scalings retain the same dependence on
the Marangoni number as given by Canright;6 only the
Prandtl number dependence has changed.

III. BOUNDARY LAYER STRUCTURE

For small Prandtl number and sufficiently large Ma-
rangoni number~the convective inertial regime! the vigorous
cold-corner convection is limited to a region of sizel !1,
and within this region relatively thin (d! l ) viscous bound-
ary layers occur along the thermocapillary-driven surface
and along the rigid wall. The dynamics of this region are
locally determined6 and the localeffectiveMarangoni num-
ber is unity; henceM does not appear in the appropriately
rescaled equations. Here we apply boundary layer techniques
to model how these thin viscous layers interact with thermal
convection in the core region, outside the viscous layers.

For this regime, locally rescaling the problem using the
core scales~lengths;M 21P22 and velocities;P2! gives
the system below

UTX1VTY5TXX1TYY, ~7!

UUX1VUY52pX1P~UXX1UYY!, ~8!

UVX1VVY52pY1P~VXX1VYY!, ~9!

UX1VY50, ~10!

where subscripts indicate partial derivatives, with the bound-
ary conditions

surface Y50:TY50, ~11!

V50, ~12!

P2UY5TX , ~13!

wall X50:T521, ~14!

U50, ~15!

FIG. 1. Problem formulation: A liquid quarter-space is bounded above by a
flat free surface subject to thermocapillary forcing, and is bounded on the
left by a rigid vertical wall, at temperatureTc to depthd and at the warmer
temperatureTh below, which is also the ambient temperature of the undis-
turbed fluid far away. The region near the corner is modeled here.
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V50, ~16!

far away X,Y→`:T→0, ~17!

U→0, ~18!

V→0. ~19!

Here uppercase letters are used for the variables scaled in
this way:U, V, X, andY. Pressure is still lowercasep. Note
that the wall is isothermal on this scale.

Following standard boundary-layer methods, we break
up the problem into separate regions: The core region, a
horizontal boundary layer along the surface, and a vertical
boundary layer along the wall. Relative to the core region,
the boundary layers are thin, by a factor ofP, with the com-
ponent of velocity along the boundary being large, by a fac-
tor of P21. We will use lowercase letters to indicate vari-
ables scaled appropriately for the boundary layers, e.g., in
the surface layery5Y/P and u5PU. We decompose the
problem into separate regions below, including only terms of
leading-order asP→0.

A. Surface boundary layer

Applying the standard boundary layer approximation
gives the following system for the flow in the surface layer:

uuX1Vuy5uyy , ~20!

uX1Vy50, ~21!

with the boundary conditions

surface y50:uy5TX , ~22!

V50, ~23!

match to corey→`:u→0, ~24!

upstreamX→`:u→0. ~25!

Note that, because the core flow is of a higher order~sizeP
smaller!, the pressure term of the standard boundary layer
equation does not appear, and the matching condition to the
core flow is homogeneous. Thus, to leading order, the surface
flow is entirely determined by the surface thermal gradient.

This leads to a net mass flux towards the wall, asx
→0. Since the wall is impermeable, the boundary layer ap-
proximation must break down in some small sub-region,
whose size is of the same order as the boundary layer thick-
ness, where the flow turns the corner to flow down the wall.
This gives the initial condition for the flow in the wall
boundary layer; the actual matching condition used will be
discussed later, along with the solution methods.

B. Wall boundary layer

Similarly, the standard approach describes the flow down
the wall, starting from an initial net flux~like a wall jet!, by
the system

Uvx1vvY5vxx , ~26!

Ux1vY50, ~27!

with the boundary conditions

wall x50:U50, ~28!

v50, ~29!

match to corex→`:v→0, ~30!

where the initial condition atY→0, matching to the flux
from the surface layer, will be defined below. Again, the core
flow is negligible, so the wall layer depends only on the
initial condition.

C. Core flow

To leading order, the core flow is irrotational, since the
viscous terms are of orderP and the flow upstream goes to
zero.~This assumption seems to agree reasonably well with
previous numerical results, where the vorticity generated by
the surface and wall appears to be confined primarily to the
boundary layers.! Then the core potential flow is determined
by the normal component of velocity on the boundaries, i.e.,
by entrainment into the boundary layers. The stream function
c satisfies Laplace’s equation

cXX1cYY50, ~31!

U5cY , V52cX , ~32!

with the asymptotic matching conditions

surface: lim
Y→0

Vcore~X,Y!5 lim
y→`

Vsurface~X,y!, ~33!

wall: lim
X→0

Ucore~X,Y!5 lim
x→`

Uwall~x,Y!, ~34!

far away X,Y→`:U,V→0. ~35!

D. Core thermal field and matching

The heat balance in the core is governed by the
convection-diffusion equation~7!, where the velocity field is
the core potential flow.

Because the boundary layers are thin relative to the core
thermal variations, they might be expected to play no role in
the thermal boundary conditions. However, flow in the
boundary layers is fast, so thermal convection in the layers
can affect the heat balance. To examine this effect in the
surface layer, assume the core temperature fieldT(X,Y) has
an additional small perturbationPt(X,y) in the layer, due to
the fast flowP21u(X,y) there. Then the heat equation~7!
becomes, in the surface layer:

P21u~TX1PtX!1V~TY1ty!

5~TXX1PtXX!1~TYY1P21tyy!, ~36!

or, to leading order

uTX5tyy , ~37!

where TX is independent ofy through the layer, and the
insulated surface boundary condition~11! becomes

TY~X,0!1ty~X,0!50. ~38!

Outside the layer, the fast flow and thus the thermal pertur-
bation disappear:
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as y→`:t→0 ~and u→0!. ~39!

Integrating~37! with the above conditions gives the surface
matching condition for the core temperature

surface:TY~X,0!5TX~X,0!E
0

`

u~X,y!dy. ~40!

The thermal convection in the layer acts as a heat source to
the core.

Applying a similar approach to the wall layer shows that,
because the wall is isothermal, there is no leading-order ther-
mal effect of the fast flow down the thin wall layer. So the
remaining conditions on the core heat are as before~14! and
~17!.

IV. SOLUTION

Based on this boundary layer structure, our overall solu-
tion scheme is iterative:

~1! Assume some initial surface thermal gradientTX(X,0);
~2! solve the surface flow driven by the thermal gradient;
~3! solve the wall flow from the surface flow turning the

corner;
~4! solve the core flow from entrainment into the boundary

layers;
~5! find the resulting temperature field in the coreT(X,Y);
~6! if the solution has not yet converged, go back to step 2.

The methods we used for each step are detailed below.

A. Surface boundary layer

In typical laminar boundary layers by solid surfaces, the
no-slip condition generates vorticity at the surface, which is
convected along the surface due to the external flow. We
adapted the method of Timman,8 developed for the usual
case, to the surface layer in our problems~20!–~25!, where
the thermocapillary stress generates vorticity and also in-
duces the flow along the surface, while the external flow is
negligible.

Timman8 assumed a velocity profile of the form

u

U
5 f ~h!512E

h

`

e2h2
~a1ch21¯ !dh

2e2h2
~b1dh21¯ !, ~41!

whereh5y/d(X), with d(X) indicating the layer thickness,
and the coefficientsa, b, c, andd, etc., are functions ofX.

For our purposes, a single-term profile suffices with the
velocity decaying to zero:

u5 f ~h!5E
h

`

a~X!e2t2dt5
a~X!Ap

2
erfc~h!. ~42!

Then the surface shear stress is

uy~X,0!5
f 8~0!

d~X!
5

2a~X!

d~X!
5TX , ~43!

where the last equality is due to the thermocapillary condi-
tion ~22!.

Following Timman, we define the momentum thickness
d2 as

d2[E
0

`

u2dy5
a2~X!p

4
d~X!E

0

`

@erfc~h!#2dh, ~44!

and the surface stress can be written in terms of the momen-
tum thickness as

uy~X,0!52
d

dX
~d2!5TX . ~45!

Since far upstream both the thermal gradient and the velocity
vanish, solving yields

d252T. ~46!

Thus we can solve for the boundary layer thickness, giv-
ing

d~X!5F2
T

TX
2«G1/3

. ~47!

where

«5
p

4 E
0

`

@erfc~h!#2dh5
Ap

2 S 12
&

2 D . ~48!

Then the resulting velocity model is

u52
Ap

2
«21/3~2T!1/3~TX!1/3erfc~h!. ~49!

and the stream function indicates the mass flux in the layer:

csurface~X,y!5E udy52F ~2T!2

«2TX
G1/3

3F12e2h2

2
1

Ap

2
h erfc~h!G . ~50!

For comparison, we used previous numerical surface
temperature data6 to calculate the surface velocity from~49!.
Figure 2 shows this boundary-layer velocity~dotted! along

FIG. 2. Comparison of surface velocity profiles from numerical data of
Canright~Ref. 6! ~solid! and Timman’s method prediction~dotted! based on
the numerical temperature gradient.~The numerical data for all comparisons
usedM510 000 andP50.01.h.!
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with the numerical velocity data from Canright6 ~solid!. The
excellent agreement validates this simple model of the ther-
mocapillary layer. Taking a vertical profile ofu through the
boundary layer also gives reasonably good agreement be-
tween the predicted shape and the numerical data.

Note: the numerical data for this and all later compari-
sons was calculated with the parametersM510 000, P
50.01. But since this cold corner region is locally deter-
mined, independent of the global length scale, then thelocal,
effectiveMarangoni number isMeff51, giving a local, effec-
tive Reynolds numberReff5100. These numerical results do
exhibit the local structure assumed here.

B. Wall boundary layer

We assume that the rapid flow along the free surface
towards the wall turns to flow down the wall, in some small
subregion near the origin where the boundary layer approxi-
mations do not apply. Then this initially concentrated flow
down the wall into passive fluid forms a plane wall jet, gov-
erned by~26!–~30!.

The wall jet is not constrained by any external length
scale, so an appropriate model is the similarity solution of
Glauert9

cwall~x,Y!52~40FY!1/4f ~h!, ~51!

h5S 5F

32Y3D 1/4

x, ~52!

where the profilef (h) is given implicitly by

h5 lnSAg21g11

~12g!
D 1) arctanS )g

21gD . ~53!

with f 5g2, and the scaling factorF is defined as

F5E
0

`

vS E
x

`

v2dx8D dx, ~54!

which is constant along the wall jet. Then the velocity may
be written as

v5S 5F

2YD 1/2

f 8~h!. ~55!

The shape of this velocity profile~55! resembles typical ve-
locity profiles near the wall from the prior numerical data.6

This similarity solution for the wall jet depends only on
the quantityF, which Glauert terms the ‘‘flux of the external

momentum flux.’’ For our problem, we need to find a way to
match the surface layer flow toward the wall to the strength
of the wall jet down the wall. Note, however, that the simi-
larity solution is singular at the originY50, where the peak
velocity becomes infinite while the mass flux goes to zero, so
applying matching at the origin is impossible.

Glauert suggests one way to estimate the magnitude of
F, by

F' 1
2 ~ typical velocity!3~mass flux!2. ~56!

But if we use the typical velocity and mass flux from the
surface layer@from ~49! and ~50!# we getF}TX

21/3, i.e., as
the thermal gradient steepens and surface convection gets
stronger, the wall flow gets weaker, which is not reasonable.

Instead, we match the peak surface velocity into the cor-
ner to the peak velocity in the wall layer coming out of the
corner, at a distance of one boundary layer thickness down
the wall to avoid the singularity

umax5
Ap

2 S TX

« D 1/3

5vmax

5225/3S c

YD 1/2

at Y5D52S Y3

c D 1/4

, ~57!

wherec5(5F/2) andTX is the gradient at the origin. Solv-
ing gives

F5
16Ap

5 S TX

2« D 1/3

. ~58!

This matching condition forF captures the positive feedback
mechanism of the cold corner, where a steeper thermal gra-
dient gives stronger flow.

C. Core potential flow

The potential flow in the core region due to entrainment
into the boundary layers~31!–~35! is expressed as the super-
position of two contributions to the stream functionccore,
one due to the surface layer and one due to the wall layer

ccore~X,Y!5ccore,sfc~X,Y!1ccore,wall~X,Y!. ~59!

The first partccore,sfc is found by boundary integrals,
using the Green’s function for Laplace’s Equation in a
quarter-plane (X.0,Y.0) with Dirichlet conditions

G~X,X0!5
1

4p
lnH @~X2X0!21~Y2Y0!2#@~X1X0!21~Y1Y0!2#

@~X2X0!21~Y1Y0!2#@~X1X0!21~Y2Y0!2#J , ~60!

The boundary condition must match the stream function at
the edge of the surface layer

ccore,sfc~X,0!5csurface~X,`!

52 1
2«

22/3~2T!2/3~TX!21/3. ~61!

Then throughout the core

c~X,Y!core,sfc52E
0

`

csurface~X,`!
]G

]Y U
Y50

dX. ~62!

Due to the singularity of the self-similar wall jet at the
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origin, the zero mass flux out of the corner cannot match the
mass flux into the corner from the surface layer. This would
give a discontinuity in the stream function at the origin, act-
ing as a mass source of fluid flowing radially away from the
origin, which is unreasonable. To eliminate this discontinu-
ity, the wall boundary condition onccore,sfcis modified from
zero to a constant equal to the flux into the corner,
csurface(0,̀ ). Equivalently, a term of the form

ccorrection~X,Y!5csurface~0,̀ !
2

p
arctan~Y/X!, ~63!

is added to theccore,sfc from the boundary integral~62!
above. Note that this correction does not affect the normal
velocity matching conditions from the core to the boundary
layers.

The potential flow due to the self-similar wall jet is
based on the approach of Plotkin,10 who used complex vari-
ables to find the outer potential flow induced by Glauert’s
solution in a half-plane. Here, we apply the boundary condi-
tions in the quarter-plane, namely, thatccore,wall(0,Y)
52*0

`v(x,Y)dx52(40FY)1/4 andccore,wall(X,0)50 for X
.0. Then the core flow from the jet flowing down the wall
becomes

ccore,wall~X,Y!52~40F !1/4@Re~~Y1 iX !1/4!

2~11& !Im~~Y1 iX !1/4!#. ~64!

D. Core thermal field

The heat in the core is governed by the convection-
diffusion equation~7!, with Dirichlet conditions at the wall
~14!, homogeneous Dirichlet conditions far away~17!, and
Neumann matching conditions for the heat flux from the sur-
face boundary layer~40!. But for numerical purposes, rather
than solve~7! directly, instead we solve the unsteady heat
equation

Tt1UTX1VTY5TXX1TYY, ~65!

wheret is time, until steady state is reached.
Also, artificial boundaries were introduced to modify the

quarter-plane problem into a rectangle problem. The domain
size and new boundary conditions were chosen to approxi-
mate the far field. Specifically, on the right boundary,T50
for the hot incoming fluid, and on the bottom boundary,TY

50 to minimize downstream influence.
The alternating direction implicit~ADI ! method was

used to solve the two-dimensional unsteady heat equation on
a uniform grid. The initial temperature field was exponen-
tially decaying on the surface and zero elsewhere. The itera-
tive solution involved two loops: The outer loop updated the
velocity field, based on the temperature along the surface;
the inner loop~a fixed number of iterations! was simply the
ADI algorithm marching in time with the velocity field un-
changing. Once the difference between successive tempera-
ture solutions fell below a certain tolerance, steady-state was
assumed.

V. RESULTS

Figure 3 shows the steady-state temperature solution.
The spatial step size is 0.01 in both directions. The thermal
field is compressed against the wall by the flow into the
corner. A closer view of the corner is shown in Fig. 4, which
also compares our current approach~on the left! with nu-
merical data from Canright6 ~on the right!. In comparing,
note that our model here is a local one, and so does not apply
at the temperature discontinuity in the numerical data, where
the wall boundary condition fory.1 wasT50. The com-
parison is encouraging, particularly since the model has no
adjustable parameters.

As another comparison, surface temperatures are plotted,
in Fig. 5. There is excellent agreement of the temperature
gradient in the corner, where the thermocapillary feedback is
strongest. The details differ farther out, but the numerical
data is for somewhat different far-field conditions, including
recirculating flow.

Uniform solution

To illustrate how the pieces fit together, we construct a
uniformly valid composite solution for a particular value of

FIG. 3. Steady-state temperature: Isotherms from the ADI method, over the
whole computational domain.

FIG. 4. Steady-state temperature detail: Isotherms of local model~left!
compared to numerical data~right! from Canright~Ref. 6!, over a region of
size l .
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the asymptotic parameter,P50.01, in the standard way. For
example, the uniform stream function for the entire domain
can be written as

cuniform5c inner1couter2cmatch, ~66!

where the inner solution is composed of the flow field in the
surface and wall boundary layers,

c inner~X,Y!5csurface~X,Y/P!1cwall~X/P,Y!, ~67!

the outer solution is made up of the two components of the
core velocity, due to the similarity solution and the Green’s
function

couter~X,Y!5ccore,sfc~X,Y!1ccore,wall~X,Y!, ~68!

where ccore,sfc includes the correction from~63!, and the
matching part, representing the overlap of inner and outer
solutions, comes from the matching conditions

cmatch~X,Y!5ccore,sfc~X,0!1ccore,wall~0,Y!. ~69!

This uniform stream function is shown in Fig. 6. The
horizontal velocity component increases as the distance to

the wall decreases, and the vertical wall jet can clearly be
seen.~The wall jet flow turns out to be the strongest compo-
nent of the uniform solution.!

The uniform composite form for the temperature is sim-
ply that used to find the surface heating~37!, i.e.,

Tuniform~X,Y!5Touter~X,Y!1P tinner~X,Y/P!. ~70!

Here P tinner(X,Y/P) is the temperature adjustment within
the surface boundary layer, from~37!, which decays to zero
outside the surface layer, so there is noTmatchto subtract. The
Touter is the temperature solution obtained from the ADI
method.

As can be seen in Fig. 7, the uniform temperature solu-
tion ~dotted! differs from the steady-state outer~ADI ! solu-
tion ~solid! only close to the surface, and only by a small
amount. The uniform temperature predictionbendstoward
the surface to intersect it perpendicularly, satisfying theTy

50 boundary condition.

VI. CONCLUSIONS

The results show that this boundary layer model effec-
tively captures the dynamics of the cold corner region, in the
convective inertial regime. The thermocapillary stress from
the surface thermal gradient drives rapid flow in a thin layer
along the surface, modeled well by a simple one-term flow
profile. This surface flow dependsonly on the surface ther-
mal gradient. In some small subregion not modeled here, the
inward surface flow turns downward along the wall. This
downward flow is modeled as a self-similar wall jet, where
the peak velocity at a position one boundary layer thickness
down is matched to the peak velocity in the surface flow.
~The singularity of the similarity solution at the origin pre-
cludes matching there.! Entrainment into the boundary layers
drives a weaker core flow, modeled as irrotational, combin-
ing a boundary integral term for the surface with an analytic
form for the wall jet. This core flow convects heat toward the
wall ~solved numerically!, containing the thermal gradient,
and thus completing the feedback loop.

This leading-order boundary-layer model depends on a
single small parameter, the Prandtl numberP. That param-
eter only affects how thin the boundary layers are; the core
flow and thermal fields do not change withP. How this local
model should bescaledto fit the original problems~1!–~6!
depends on the Marangoni numberM also, of course. Hence
this model could be incorporated as a local representation of
the cold corner, in the context of a global numerical model

FIG. 5. Steady-state surface temperature: Current model~solid! compared to
prior numerical data~Ref. 6! ~dotted!.

FIG. 6. Uniform stream function~detail!: Streamlines of the uniform com-
posite solution, forP50.01. The strong wall jet appears clearly.

FIG. 7. Uniform temperature solution detail: Isotherms with~dotted! and
without ~solid! the surface convection term, forP50.01 ~vertical scale ex-
aggerated!.
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for, e.g., a weld pool. This would eliminate the need to nu-
merically resolve the thin boundary layers, a significant com-
putational simplification.

In future work, we hope to examine more carefully how
the surface layer ‘‘turns the corner,’’ with the goal of a better
matching condition with the wall layer. This would probably
entail some model of the two-dimensional~2D! turning flow
in the small corner subregion. Another improvement would
be to consider the next terms beyond leading order, in a
power series inP.
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